
P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 19 of 37 Ceebot Directed Study

Unit 3: Classes, Objects and Methods

 Classwork (4 Tasks)
In this section of our work we shall start to look at the world of Object Oriented Programming
(OOP for short)

Introduction to OOP
 The world around us is made up of objects .. e.g. students, classes, cars, restaurants

etc.
 A class is like a template or design for an object.
 For example, we may have a design for a car class, but my own red/white Citroen

rusting away in the car park is an actual object from this class .. it is a specific car with
its own colour, registration number, etc. …. we sometimes say this is an instance of
the car class.

 My car is different from your car and all the others in the car park but they are similar in
many ways (number of wheels, engine, windscreen, etc.). This is because they are all
objects belonging to the same class .. the car class.

C# Classes
 C# is an Object Oriented programming language .. which means that it allows us to

program using classes and objects.
 There must always be at least one class in a C# project and there must also always be

a Main() method (or function) because program execution always starts here.
 So far in this course all your projects have used one class .. which was called Program
 When you ran a project, C# looked for and then executed its Main() method.
 Note: you can’t execute a class .. you must first create an object from it (but see Note

below)
Just as you can’t drive a car’s design .. you can only drive a real car built from the
design!

 In real OOP programming:
o a class can have any reasonable name (usually starting with a Capital letter)
o a class can have data (e.g. variables) that define the class properties or attributes
o a class can also have methods (or functions) that define the class behaviour
o once a class has been defined, you can create any number of objects from it.

 Note: class Program
 {
 static void Main()
 {
 }
 }

ABOUT YOUR LOGBOOK
For the class problems 1, 3 and 5 only put the C# source code and sample outputs into your
logbook. For the problems 2 and 4 , enter in your logbook:

 Input-Output Diagram
 UML Class Diagram (see next page for example)
 Algorithms for all Methods (see next page for example)
 Source Code and screenshots
 Test Plan (with results)

The word 'static' here means that the Main() method
belongs to the class -- NOT an object. So we can use
Main() without first creating an object from the class

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 20 of 37 Based on the original work by Brian Ward

Look at Task4_1.csproj which contains a class called
MealCosts.
 First compile and run the project to see what it does.

 See that the program asks you to enter the cost of food and drink, then how many days
per week you attend college. It then calculates your college daily and weekly costs
(assuming you have 1 meal and 3 drinks per day)

Input-Output
Model

 If you examine the code (next page) you will see that there is one class (MealCosts).
 Also note that inside the MealCosts class there are 5 variables (sometimes called class

attributes or fields) and then there are 4 methods
 Methods (or functions) are used to perform tasks for a class and in this case these 4

methods are named inputData(), calcTotalCosts() and outputCosts() (plus of course
Main())

Class diagram
 In OOP programming we often draw a UML Class diagram to show the basic class structure:

Detailed Algorithm (this gives the detail for each method)

1. method: Main
a. Create a new object called myMeals from the MealCosts class:

 MealCosts myMeals = new MealCosts();
b. Call myMeals’ inputData method : myMeals.inputData();

c. Call myMeals’ calcTotalCosts method : myMeals.calcTotalCosts();

d. Call myMeals’ outputCosts method : myMeals.outputCosts();

2. method: inputData
a. Input the cost of a meal (foodCost)
b. Input the cost of one drink (drinkCost)

c. Input the number of days attended per week (daysPerWeek)

3. method: calcTotalCosts

a. Calculate the dayCost as foodCost + (3 * drinkCost)

b. Calculate the weekCost as daysPerWeek * dayCost

4. method: outputCosts

a. Output dayCost

b. Output weekCost

4.1 Meal Costs

double dayCost

MealCosts

double foodCost
double drinkCost

double weekCost

inputData()
calcTotalCosts()
outputCosts()

 Name of class

attribute
s

methods

foodCost

drinkCost
dayCost

weekCost

Program
daysPerWeek

int daysPerWeek

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 21 of 37 Ceebot Directed Study

 class MealCosts
 {

 double dayCost, weekCost; // define all class variables (attributes)
 double foodCost, drinkCost;
 int daysPerWeek; // number of days attending college

static void Main() // program starts executing here
{
 MealCosts myMeals = new MealCosts(); // create a new myMeals object
 myMeals.inputData(); // call object’s inputData method
 myMeals.calcTotalCosts(); // call object’s calcTotalCosts method
 myMeals.outputCosts(); // call object’s outputCosts method
}

void inputData() // method to input data from keyboard
{
 string input; // local input variable
 Console.Write("Enter the price of a meal: £");
 input = Console.ReadLine();
 foodCost = Convert.ToDouble(input);
 Console.Write("Enter the price of a drink: £");
 input = Console.ReadLine();
 drinkCost = Convert.ToDouble(input);
 Console.Write("Enter the number of days per week at college: ");
 input = Console.ReadLine();
 daysPerWeek = Convert.ToInt32(input);
}

void calcTotalCosts()
{
 dayCost = foodCost + (3 * drinkCost);
 weekCost = dayCost * daysPerWeek;
}

void outputCosts()
{
 Console.WriteLine("\nYour Final Costing Results");
 Console.WriteLine("==========================");
 Console.WriteLine("Total cost for one day = £" + dayCost.ToString("0.00"));
 Console.WriteLine("Total cost for one week = £" +

weekCost.ToString("0.00"));
}

} // end of MealCosts class

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 22 of 37 Based on the original work by Brian Ward

 Test plan

Test INPUTS Expected Results Actual Results
No foodCost drinkCost daysPerWeek dayCost weekCost dayCost weekCost
1 2.20 0.60 5 4.00 20.00
2 1.50 0.50 5 3.00 15.00
3 4.50 1.00 2 7.50 15.00

Task 4.1
 Modify the program so it also enters the user’s name and then outputs this name along

with the results display.
 Add a new method to the MealCosts class and call it introduction() .. this should display

suitable headings and user instructions before the program does its input. Get it to work.
 Not everyone is the same. Some people take more than one meal (or none at all) and not

everyone has 3 drinks per day. Modify the program so that it includes another method
called getAmounts() which asks the user how many meals and how many drinks on
average they have each day and inputs these values.

 The rest of the program should then use this new data correctly in the calculations.

You are now to write a new program for the following
problem to calculate the final score in a computer game.
The program has a similar structure to the previous program

of this unit, but it should use a class called GameScore.
You can use the design and program of problem 4.1 as a guide.

The program has at least four methods … as well as Main of course.
 The first method inputs the player’s name, the number of aliens destroyed, the value

of treasure accumulated and the number of hours played.
 The second method calculates the raw score using the formula below:

Raw Score = (aliens destroyed x 20) + (treasure value x 50)
It also calculates the final score by applying a time penalty according to how long the
game was played:

o If the game lasted more than 10 hours .. score 50% of the raw score
o Between 7 and 10 hours .. 70% of the raw score
o Between 5 and 7 hours .. 80% of the raw score
o Between 3 and 5 hours .. 100% of the raw score
o Under 3 hours .. add an extra 50% to the raw score

 The third method outputs all details, including the player name, raw score, and final
score.

 Add a fourth method to display a suitable congratulatory (or otherwise) end message
that depends on the value of the final score achieved.

Note: For this exercise you must use separate methods within a class as described above.
You should always use meaningful names for the class and methods.

4.2 Game Score

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 23 of 37 Ceebot Directed Study

Look at project Task4_3.csproj and execute it several times.
See that a random number between 1 and 6 is generated by
the Dice class.

Examine the Dice Class code below:

Public and Private
 This program example uses the words public and private which we have not used

before
 It is common practice to use these words to limit access to parts of the program

o Class variables (attributes) are generally made private so that access to them
can be carefully controlled (limited to the class they are in)

o If a method is public it is made available to the world outside this class.
o There is also a protected mode (this limits access to the class and any

subclasses derived from it). Note that you can create child classes that inherit
the attributes and methods from another class .. this is known as inheritance)

Return
 The oneThrow() method is being used to return a random integer
 This is why it is defined with public int instead of void (void means nothing is returned)

4.3 Very Dicey

 class Dice
 {

 private Random rand; // define rand as a Random class object

public static void Main() // program starts executing here
{
 Dice myDice = new Dice(); // create a new object called myDice
 myDice.rand = new Random(); // create a new Random object
 Console.Clear(); // clear the console screen
 myDice.throwTheDice(); // call the throwTheDice method
}

public void throwTheDice() // call the oneThrow() method
{
 Console.WriteLine("I have thrown " + oneThrow());
}

public int oneThrow()
{
 return rand.Next(6) + 1; // pick a number from 1 to 6 and return this
}

} // end of Dice class

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 24 of 37 Based on the original work by Brian Ward

Task 4.3
1. Add a new method called throw20Dice that uses oneThrow() in a loop so as to throw

the Dice 20 times. Get it to work correctly
2. Change the display in throw20Dice so that it has this format:

Throw No 1 is ….
Throw No 2 is … etc.

3. Set up a new method called manyThrows … this should start by asking how many
times you want to throw the dice and then produce a display like the one shown in 2
above

For this task you can modify task 4.3 : Very Dicey .
 You are to add a new method called countEm.
 This method should behave like the manyThrows method .. asking how many times

you want to throw the dice.
 But It should also count how many times one, two, three, four, five and six appears.
 It should finish by displaying the results like this:

 Test the code by throwing the dice 1000 times.
 In your logbook for this exercise you can put the source code for this method

(commented fully) and sample output results

4.4 Dicey Behaviour

Dice Count
==========
Total Number of throws = < >
=============================
Number of ones = < >
Number of twos = < >
Number of threes = < >
Number of fours = < >
Number of fives = < >
Number of sixes = < >

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 25 of 37 Ceebot Directed Study

Now you are to try to program a simple version of the American dice game Craps which uses
2 dice. Follow these instructions:
 1. Create a new project with a class called Craps.
 2. Create a oneThow() method -- like the one you had before
 3. Create a throw2Dice() method that uses oneThrow() twice, printing and returning the
result
 e.g. You threw a 6 and a 4 -- making 10 (get this to work before progressing)
 4. Create a play() method that uses throw2Dice() and checks the result :
 2, 3 or 12 is Craps -- You lose! End of game!
 7 or 11 -- You win! End of game!
 4, 5, 6, 8, 9 or 10 -- this is your Point (the game continues : see below)
 5. Create a throwPoint() method which does the following:
 Calls throw2Dice() repeatedly until either your same Point is thrown again -- You Win!
 or 7 is thrown -- You Lose!
 This method is only called if a Point has been obtained in play()

4.5 Craps!

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 26 of 37 Based on the original work by Brian Ward

Independent Study (2 Tasks)
The following exercises are to be done individually and independently, in your own time.

Look at project Task4_6.csproj .. and examine the
code on the following pages.

You will find that there are 2 classes in this project .. NuclearStation and Test

 When you execute this project, the Main() method creates a new Test object called
myTest and calls its testStation() method:

 Test myTest = new Test();
 myTest.testStation();

 When the new Test object is created, the constructor (a method with the same name
as its Class) creates a new NuclearStation object called myStation:

 myStation = new NuclearStation();

 The myTest.testStation() method calls myStation’s display() method and you will see
the following screen:

 Nuclear WinterLand Station
 ==========================
 Main Menu
 ==========
 1: Lower Fuel Rods
 2: Raise Fuel Rods
 3: Activate Shields
 4: Deactivate Shields
 5: Quit

 It then calls myStation’s getChoice() method which asks you to enter a choice of 1-5
and returns your entry back.

 If your choice is "1" the lowerRods() method is called. This asks you to enter the
correct code and you’re in trouble if you get it wrong!

Task 4.6
 The program is only partially completed. Your main task is to complete it!
 First examine the code and be clear how it all works.
 Add some new methods to the NuclearStation class to deal with the other menu

options.
o Choices 1 and 4 require authorisation before proceeding
o Choices 2 and 3 are less dangerous .. users are informed about what they are

doing and given the chance to change their minds
 The testStation() method should be modified to include these new options.
 The testStation() method should also use a loop to allow users to continually select

choices from the display until the "5" option is chosen.
 Note that allowing any other number choices could be a disaster so you should

validate the inputs and give suitable error messages if e.g. 7 is chosen.

ABOUT YOUR LOGBOOK
For independent study problem 6 and 7 enter in your logbook:

 UML Class Diagrams
 Source Code and sample outputs

4.6 Nuclear Control

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 27 of 37 Ceebot Directed Study

 class NuclearStation
 {

private const string SYSTEMCODE = "NUKEME"; // set authorisation code constant

public void display()
{

Console.WriteLine("Nuclear WinterLand Station");
Console.WriteLine("==========================");

 Console.WriteLine(" Main Menu");
 Console.WriteLine(" ==========");
 Console.WriteLine(" 1: Lower Fuel Rods");
 Console.WriteLine(" 2: Raise Fuel Rods");
 Console.WriteLine(" 3: Activate Shields");
 Console.WriteLine(" 4: Deactivate Shields");
 Console.WriteLine(" 5: Quit\n");
}

public string getChoice()
{
 string choice; // local string variable
 Console.WriteLine("\nWhat do you want to do?");
 Console.Write("Enter your choice : ");
 choice = Console.ReadLine();
 return choice; // return user choice as a string
}

// NuclearStation class continues on next page

 class Test
 {

 private string choice;
 private NuclearStation myStation ;

public static void Main() // program starts executing here
{
 Test myTest = new Test(); // create new Test object called myTest
 myTest.testStation(); // call its testStation method
}

public void testStation()
{
 myStation.display(); // call the station display method
 choice = myStation.getChoice(); // get choice returned
 if (choice == "1")
 {
 myStation.lowerRods(); // call lowerRods method
 }
}

} // end of Test class

public Test() // the Test class constructor
{
 myStation = new NuclearStation(); // create new object from other class
}

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 28 of 37 Based on the original work by Brian Ward

public void lowerRods()
{
 string code;
 Console.WriteLine("\nWARNING:DANGER: Lowering Fuel Rods!");
 Console.WriteLine("You require an authorisation code to do this");
 Console.Write("Enter your code now:");
 code = Console.ReadLine(); //enter the code
 if (code == SYSTEMCODE) // check the code
 {
 Console.WriteLine("\n** CODE CORRECT : Fuel rods being lowered");
 }
 else
 {
 Console.WriteLine("\n** INCORRECT : please stay where you are!");
 Console.WriteLine("You will now be escorted from the building!");
 }
}

} // end of NuclearStation class

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 29 of 37 Ceebot Directed Study

Start a new console application called Task4_7 with a class called CrapsGame which is to
be used with a Craps class. You may want to read up on constructors before tackling this.
Now follow these steps and look at the previous task 4.6 for some clues.

1. Looking at the CrapsGame class, select Project from the menubar, followed by Add

Class and name this new class Craps. You should now have 2 classes in the same
project.

2. Now put the code from your previous Craps class of Task 4.5 into this new Craps class
(you can copy and paste if you want)

3. Create a Constructor method in the Craps class (it should have the same name as the
class)

4. Cut and paste the code that creates a new Random object into this constructor from
Main()

5. You probably will have 2 Main() methods in 2 classes .. this will confuse the program
because it doesn’t know where to start - so remove the Main() method from Craps and
use it in CrapsGame instead (paste it over the top)

6. Now check that your project still works as it did before !
7. In the CrapsGame class .. create a new method called manyPlay() that will allow you to

play the game as many times as you want.
8. Create an updateScore() method in CrapsGame that keeps a count of games won and

games lost (you will need to get the play() method in Craps to return something).
9. Add a rules() method and a finalScore() method to CrapsGame which display the

appropriate information.

4.7 More Craps!

